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KOlTER'S STABILITY THEORY IN A COMPUTER
AIDED ENGINEERING (CAE) ENVIRONMENTt

J. ARBocz and J. M. A. M. HOL
Delft University of Technology, The Netherlands

Abstract-The development of "DISDECO", the Delft Interactive Shell Design Code is described.
The purpose of this project is to make the accumulated theoretical, numerical and practical knowl
edge of the last 20 years readily accessible to users interested in the analysis of buckling sensitive
structures. With this open ended, hierarchical, interactive computer code the user can access from
his work-station successive programs of increasing complexity.

Included are modules that contain Koiter's imperfection sensitivity theory extended to aniso
tropic shell structures under combined loading. The nonlinear Donnell-type anisotropic shell equa
tions in terms of the radial displacement Wand the Airy stress function F are used. The cir
cumferential dependence is eliminated by Fourier decomposition. The resulting sets of ordinary
differential equations are solved numerically via the "Shooting Method". Thus the specified bound
ary conditions can be enforced rigorously not only in the pre-buckling but also in the buckling and
post-buckling problem. Initial results indicate that in order to obtain reliable results for anisotropic
shells rigorous enforcing of the edge restraint and of the boundary conditions is indeed a must.

1. INTRODUCTION

The central goal of the current shell research activities at the Faculty of Aerospace Engin
eering of the TV-Delft is the development of "Improved Shell Design Criteria" for buckling
sensitive structures, which incorporate all the theoretical knowledge accumulated in the
last, say, 30 years through intensive research in the Aerospace, the Nuclear and the Offshore
fields and which make efficient use of the currently available interactive and (super) com
puting facilities.

All the current design manuals (Weingarten et al., 1965; Anonymous, 1977; Anony
mous, 1980) adhere to the so-called "Lower Bound Design Philosophy" that was already
in use 50 years ago. That is, they recommend the use of an empirical "knockdown" factor
y, which is so chosen that when it is multiplied with the (classical) buckling load of the
perfect shell a "lower bound" to all available data is obtained (see Fig. 1).

The improvements in the currently recommended shell design procedures are primarily
sought in a more selective approach to the choice of the "knockdown" factor y. Due to the

tPresented at XVIIth International Congress of Theoretical and Applied Mechanics, 21-27 August 1988,
Grenoble, France.
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Fig. I. Test data for isotropic cylinders under axial compression (Weingarten et al., 1965).
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pioneering efforts of Koiter (1945), Budiansky and Hutchinson (]%4) and many other
investigators, initial geometric imperfections have been identified as the main cause for the
wide experimental scatter observed in practice. Thus it is proposed that if a company takes
the necessary care to produce all its shells according to well characterized standards, and
if it can show via experiments that the boundary conditions are defined in such a way that
during assembly no additional imperfections (especially at the shell edges) are introduced.
then the use of an improved (higher) "knockdown" factor ;' derived by the stochastic
approach proposed by Elishakoff and Arbocz (1985) and Elishakoff el al. (1987) should
be allowed. The proposed new "Improved Shell Design Criteria" can be represented by the
following formula

( 1)

where Pa = allowable buckling load, P, = buckling load of the "perfect" structure cal
culated via one of the advanced shell codes like BOSOR-4 (Bushnell, 1972), I'a = reliability
based improved (higher) "knockdown" factor and F.S. = factor of safety.

The steps involved in the definition of the reliability based improved (higher) "knock
down" factor )'a can be summarized as follows:

1. Compute the Fourier coefficients of the measured initial imperfection surveys of a
relatively small sample (say four) nominally identical shells produced by the same
manufacturing process.

2. Calculate by ensemble averaging the mean vector and the variance-covariance matrix
of the Fourier coefficients of the experimental sample.

3. Use the First-Order Second-Moment Analysis (Elishakoff et al., 1987) to compute the
reliability function R(}.) of the buckling of shells with general random imperfections.

4. Determine the improved (higher) "knockdown" factor I'a for the specified reliability
from the plot of R(I.) vs Ie, where ). is the normalized load parameter (see Fig. 2).

Notice that by using the First-Order Second-Moment Analysis to derive the reliability
functions for shells produced by a certain manufacturing process, one is combining the
Lower Bound Design Philosophy with the notion of Goodness Classes. Thus shells made
by a process which produces inherently a less damaging initial imperfection distribution
will not be penalized because of the lower experimental results obtained with shells produced
by another process, which generates a more damaging characteristic initial imperfection
distribution.

2. DEVELOPMENT OF "DISDECO"

The key to the success of any Stochastic Stability Analysis lies in the reliability and
accuracy of the buckling load predictions made by the deterministic buckling analysis used.

R( AI= Proll (A ~ A)
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Fig. 2. Reliability function R(A) for a given R/t ratio.
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On the other hand the success of the detenninistic buckling load analysis depends very
heavily on the appropriate choice of the nonlinear model employed, which in turn requires
considerable knowledge by the analyst as to the expected physical behaviour of imperfect
shell structures. As has been pointed out by Arbocz and Babcock (1980) this knowledge
can best be acquired by first using the series ofimperfection sensitivity analysis of increasing
complexity that have been published in the literature.

In order to make the search for the most appropriate nonlinear model feasible the
development of "DISDECO", the Delft !nteractive ~hell Design Code has been initiated.
This "open architecture" interactive code will combine shell computer programs of different
degrees of sophistication with the latest tools of infonnation science such as Data Bases,
Interactive Graphics and Expert Systems into an advanced hierarchical design and analysis
system.

Analysing existing interactive systems for different types of applications has led to the
identification of their major components. Based on the results of this study the conceptual
design of the global architecture of DISDECO has been completed. The building blocks of
the full scale system and their functional relations are displayed in Fig. 3.

The central part of the whole system is the "Command and Control Processor". Its
function is to control and direct the activities of the system. It starts-up and winds-down
the design system, processes user input through execution of modules, creates a working
environment and in general is the working partner of the user.

The link from the user to the command and control processor passes through the
"Man-Machine Interface". Assuming that the user employs a tenninal device or work
station which supports graphics, the man-machine interface controls the input stream from
the user, analyses it, checks it for correct syntax, validates the commands and passes it in
an interpretable fonnat to the command and control processor. In a similar manner the
output stream from the design and analysis system is converted to a meaningful output for
the user.

To increase the flexibility of DISDECO the dependence on a specific data management
system must be minimized. Therefore, a "Generalized Database Interface" is needed to
shield the global design and analysis system from the peculiarities of a commercially
acquired RDBMS (Relational Data Base Management System).

The real work of DISDECO is done by a number of dedicated "Analysis Modules".
Supplementary modules are required for pre- and post-processing functions, remote batch
processing of analysis tasks and general utility functions. An essential supplementary
module is dedicated to the provision of on-line help infonnation about system capabilities,
usage details and at a later stage for literature retrieval.
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Fig. 3, Global architecture of the interactive shell design and analysis system "DISDECO",
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r--------------------i
; DATA CHECKING~NPUT I :
i :FRONT·END JCLI :
, I
I I :GENERATION ANALYSIS INPUTI I
I I

ICOM,.!A~O ~ I I I I BACK·END JCL I I
I ..J DRIVER r: . I
t'::~':S~~R~:! I t lr:R::E:':J.IC::TE=-J"",Oc:'1B~__m

Ii· SUSMIT ~OTE}
I J.NALYSISI I BATCH

! I REMOTE JOB JOB ANA Y !
I I I I FETCH I UTPUT

: YPROCESSlNG ANALYSIS OLITPt1 I

~---------------------j
Fig. 4. Generalized analysis module.

Analysis modules can be ofseveral types. Small analysis tasks can be done interactively
under control of the design system, while large analysis tasks must be performed through
batch processing either on the same computer or on a remote (super) computer. Medium
size tasks can be done optionally interactively or through remote batch processing. This
approach ensures optimum usage of available computing resources and frees the design
system for other tasks. The layout of a generalized analysis module is shown in Fig. 4.

The development of the proposed design and analysis· system DISDECO can only be
concluded successfully through a step by step evolutionary effort. Thus initially a pilot
system, containing the essential core features of the full scale system shown in Fig. 5. has
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Fig. 5. Schematic layout of the full scale system.
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been made operational (HoI, 1989). It has been put together in accordance with a high
level of "Development Standards" (Anonymous, 1984) so that it can serve as a starting
base for the full-scale system. Test-site users have been asked to feed back their experience
with the pilot system so as to incorporate their findings in the development of the full-scale
system.

The final component of DISDECO is defined as an "Expert System" (see Fig. 3). Its
purpose is to make available the knowledge and experience of recognized experts. As such
its function is parallel to that of the command and control processor, adding intelligence
and reasoning capabilities to assist the user. Inclusion of a proven expert system has been
opted for. However. acquisition and integration of an expert system requires major efforts
for the generation of criteria and specifications. Collection and formalizing of existing
knowledge is another major issue requiring a dedicated effort. Thus, whereas the inclusion
of an expert system is an essential step to improve the proposed system from a powerful
toolbox to a full-fledged assistant. still its implementation will be delayed until the results
and experiences with the pilot system have been evaluated.

3. DEVELOPMENT OF "ANILISA"

When DISDECO is finished it will provide an easy access to most of the theoretical
knowledge, that has been accumulated by the many scientists who have been active in the
field of shell stability, via the advanced interactive and computational facilities offered by
the modern high speed 32-bit work stations. Great care is being taken to present the results
in a unified form so as to make it easy for the user to proceed step-by-step from the
simpler approaches used by the early investigators to the more sophisticated analytical and
numerical methods used presently.

This approach is illustrated by the extension ofKoiter's b-factor method (Koiter, 1967 ;
Hutchinson and Amazigo, 1967) to anisotropic shells loaded by axial compression, external
pressure and torsion.

Anisotropic shell equations
Using the sign convention defined in Fig. 6 the Donnell-type equations for perfect

anisotropic shells (Tennyson and Muggeridge, 1969) can be written as

(2)

(3)

where the linear operators are

p

p

Fig. 6. Notation and sign convention.
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and the nonlinear operator is

L.vdS. T) = S.\xT." -2S.\.T." +S"T'T (7)

Commas in the subscripts denote repeated partial differentiation with respect to the inde
pendent variables following the comma. The stiffness parameters Arl' Brl' Drl. Ar> ... etc.
are defined in Arbocz and Hoi (1989). W is the component of displacement normal to the
shell midsurface (here positive inward) and F is the Airy stress function.

Assuming that the eigenvalue problem for the buckling load A, will yield a unique
buckling mode Will with the associated stress function pi'. a solution. to be valid in the
initial post-buckling regime. is sought in the form of the following asymptotic expansions

A ""'- = 1+ac+hc+'"A .-,

w= W(O)+~W(II+~2WI2)+ ...

F= FIO)+~FIII+!;2FI2)+... (8)

where W( II will be normalized with respect to the shell thickness t and W (2
) is orthogonal

to WI I, in some appropriate sense.
A formal substitution of this expansion into the nonlinear governing eqns (2) and (3)

generates a sequence of equations for the functions appearing in the expansions.

GOl'erning equations of the Oth-order state (pre-buckling problem)
The set of governing equations for Wlo, and FlO) are

(9)

(10)

Since the external loading and the boundary conditions are axisymmetric. therefore the pre
buckling solution will also be axisymmetric. Assuming

(II)

(12)

then substitution into eqns (9) and (10) and regrouping yields

(13)

(14)

where ( )' = R( )" i. is the nondimensional axial load parameter (i. = (cR/Et 2)No). fi is
the nondimensional external pressure (fi = (cR 2/Et 2)p) and f is the nondimensional torque
parameter (f = (cR/Et 2 )N,,). positive counter-clockwise. The quantities W,.• Wp and WI
are evaluated by enforcing the circumferential periodicity condition (see Appendix A for
details). Equation (13) can be integrated twice yielding

(15)
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where .x = xjR and the constants of integration C I and C1 are identically equal to zero
because of the periodicity condition (see Appendix A for details), Eliminating fo between
eqns (13) and (14) one obtains

(16)

A fourth-order linear ordinary differential equation with constant coefficients which always
admits an exponential solution. Closed form solutions for simply supported and for clamped
boundary conditions have been published in the literature (Booton, 1976; Vermeulen,
1982),

GOL'erning equations of the 1st-order state (buckling problem)
The set of governing equations for W( l} and F( l} becomes

(17)

Ls.(pi I) + LD.( W( I) = (11R)F~}~ + (ERt 2Ic)fo..u W:,? + tWo,xxF~/,)

- (Et 2/cR)()' w~1.:+pW~~; - 2iW~.~J). (18)

These equations admit separable solutions of the form

pi I) = (ERt2/c)[fl (x) cos n8+ fz(x) sin n8J

(19)

(20)

where e= .vlR.
Substitution, regrouping and equating coefficients of like trigonometric terms results

in the following system of four linear homogeneous ordinary differential equations with
variable coefficients

A-* fiv (2A-* +A-* ) 2{"+A-* 4f 2A-· f"'+2A-. 3f'zz I - IZ 66 n . I II n 1 - 26n 2 16n Z

- (t/2R)[B!1 H,i~ -(BTl +B!2 -2B~6)n2w';+BTzn4wI+ (2B!6 -B~I)nw2'

-(2BT6-Bt2)n3w;]+cw'; -(ctIR)nzw'Owl =0 (21)

A!d2 - (2AT2 + A~6)n2f'2 +ATln4f2 +2A!6nf';' - 2AT6n3 f'1

- (t/2R)[B!lw2' -(Bfl +B!1-2Bt6)n2w'2 +Bf2n4w1-(2B!6- Btl)nw';'

+(2BT6-BtZ)n3w'I]+CW'2 (ctIR)n 2w'Owz = 0 (22)

(2R/t)[B!di~ - (BTl +B11- 2Bt6)n2f'; +Bf2n4 fl + (2B!6 - Btl)nf'2

-(2BT6 -B~2)n3f;J+15flwij-2(15T2 +215t6)n2w'; +15!2n4wI +4Df6nw'2'

-415!6n3w;-(4cR2jt2)F; + (4cRjt)[).w'; -pn2wl-2nfw;+n2(f'Owl +w'Ofl)] = 0 (23)

(2Rlt) [B!I l2 - (BTl +B!2 - 2Bt6)n2f'2 + Bf1n4 f2 - (2B!6 - i1: I)nf';'

+ (2B16 -Bt1)n3.r\J +15Tlw2 -2(1512 +215:6)n2w2 +15!2n4w2-4Df6nw';'

+415!6n3w'l - (4cR2jt2)n + (4cRlt)[AW'2 -pnzw2 +2nfw'l +nZ(f'Ow2+W'Ofz)J = O. (24)

Further, in order to be able to use the "shooting method" of Keller (1968) to solve the
governing equations of the 1st-order state it is necessary, by considering eqns (21) and (23),
to eliminate the wij term from eqn (21) and the l~ term from eqn (23). Similarly, by
considering eqns (22) and (24) one must eliminate the ~2 term from eqn (22) and the li
term from eqn (24). Finally, some regrouping makes it possible to write the resulting
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f'; = CI7 /,; - Cdl + C,d'2' +C20 /'2 + C2I W'; + C22 1<1'1 +C2 ,1I''2' + C24W~

+ C26W~WI + CCSPW 1- C28/'OW I+ C,ofw~ - C'li.w'; C2~1I;;fl (25)

Wl~ = C II'2 +C2.t~+Cd'{' -C4.f'1 +C5W'~ -C"W2+C7W';' -CRW'1

(28)

The constants C1- C, I are listed in Arbocz and HoI (1989) ; /'0 is given by egn (15).
This set of homogeneous differential equations with variable coefficients together with

the appropriate boundary conditions listed in Arbocz and HoI (1989) form an eigenvalue
problem which is solved numerically.

Governing equations oI the 2nd-order state (post-buckling problem)
The set of governing equations for W(2) and F(2) is

LA.(F(2)-LB.(W(2) = -(1/R)W~;~-two'\'xW\2,)

+ {l/2)(t/R)2n2{(WI WI,xx + wI,xW!.x + W2 W2,xx + W2,xW2,x>

+ (11'1"'1.1'1' WI.xWl.x - W2W2,xx +W2,xW2,x) cos 2n8

+ (WI W2.xx + W2W!.xx - 2Wl.xW2,x) sin 2n8}

L B.(F(2) +LD·(W(2) = {l/R)F~;; + (ERt 2/c)/o.xx W:l~l) + two.xxF;?,)

(Et 2/CR)(AW;;: + pW\2/ - 2fW;;()

- (1/2)(Et'/cR)n 2{(wd!.xx + 2WI,xI!.x + wI,xxII + Wd2.xx +211'2,J2,x + H'2,xJ~)

+ [wd!.xx -2w!.xI"x +w!.xxil - (w212,xx - 2W2,xI2,x +w2..012)] cos 2n8

+ [wd2,xx - 2w!..J~.x + Wt.uf2 + (w2It.u - 2W2.x.fLx +w2.xxII)] sin 2n8}.

These equations admit separable solutions of the form

W(2) = t[w,(x) +wp(x) cos 2n8+ w,(x) sin 2nB]

F(2) = (ERt 2/c)[,f,(x) + Ip(x) cos 2n8+ f.(x) sin 2nB].

(29)

(30)

(31)

(32)

Substituting, regrouping and equating coefficients of like trigonometric terms yields the
following system of six linear inhomogeneous ordinary differential equations with variable
coefficients

A!dj; (2AT2 +At6)4n2/Ii+AT II6n4h -4A!6nI;;' + 16AT6n3.1";.

-(t/2R)[B11 Wp- (BTl +B12 -2Bt6)4n2wli + BT2 16n4wp + (2B!6 - Btl)2nw;;'

-(2BT6 - Bt2)8n 311';,] +cwli - (4ct/ R)n2wowp = (ct/2R)n 2(w 1w'{ - W'I W'I - w2 w 'i +W2W2)

(34)
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A!d~V - (2ATz+A~6)4nZ f;:+ATI16n4J;.+4A!6nfj)' -16AT6n3 fp

- (t/2R)[B!, W;~ - (BTl + B!z - 2B~6)4nzw;:+BTzI6n 4w;. - (2B!6 - Btl )21111';;'

+ (2B 16 - B~z)8n3wp] +CW;: - (4ct/R)nZwow;. = (ct/2R)n 2(wl »"~ +wzw'; - 211"1 »"z) (35)

B!d~V + (t/2R)DT, w~v - (2cR/t)f~+2dw~

= -cnZ(wd';+2w'd',+w';fl+wd~+211';I;+II'~Iz) (36)

B!dip - (BTl + B!z - 2B~6)4nz.fP + BTz16n4I p+ (2B!6 - Btl )2nI;"

- (2BT6 -Btz)8n3I;. + (t/2R)[DT, wp -2(DTz + 2Dt6)4nZwp + D!zI6n4
\t'(1

+ 8DT6nw;:' - 32D!6n3w;.] - (2cR/t)Ip+2c(.A.wj) -4n2pwp -4nill'J

+8cn2(w'~.fp+ fOwp) = -cnZ(wd'; -2w'd', +w';I, -wd~+2w;I; - w'dz) (37)

B-* 'Iiv (B-* +B-* 2B-*)4 zI"+B-* 16 4f (2B-* B-*)2 I'"Zl ;.- II 22- 66 n y IZ n ;.- 26- 61 nil

+ (2BT6 - B~z)8n3Ip + (t/2R)[DT, W;~ - 2(DTz + 2Dt6)4n2w;:+ D!2 16n4 \1';

- 8DT6nw;;' +32D!6n3wp] - (2cR/t)I;: +2c(.A.w;: -4nzpw; +4niwp)

+ 8cnZ(woJ;. + loW) = -cnZ(wd'~ - 2w'd; + w';Iz + wzl'; - 2»"zl'l + w'd,), (38)

Equation (33) can be integrated twice to yield

where x = x/R and the constants of integration (;3 and (;4 are identically equal to zero
because of the periodicity condition (see Appendix A for details). Eliminating I, between
eqns (33) and (36) one obtains

Further, in order to be able to use the "shooting method" of Keller (1968) to solve the
governing equations of the 2nd-order state it is necessary, by considering eqns (34) and
(37), to eliminate the wp term from eqn (34) and the I; term from eqn (37). Similarly, by
considering eqns (35) and (38) one must eliminate the w~~ term from eqn (35) and the ~v
term from eqn (38). Finally, some further regrouping makes it possible to write the resulting
equations as

Ip = Ddj)-(D IO +D 17wo).fp+D Id;' -Dld~-(DI3+D 31 A.)W;;-(D I4 -DIRWO)Wp

-D I7 (.fO -p)wp -Dlsw;:' +(D I6 +DI9i)W~ +D32 (wlw'; - W'I W'I - wzw'~ +W;W;)

-Ds(wd'; -2w'd', +w';I,-wd'~+2w'd;-w'dz) (41)

I;~ = Dd;:-(DIO+Dl7w'~)J;.-DI dj)' +D 12 fp-(D I3 +D 31 }.)w;:

-(D I4 -D1SWo)wy -D I7 (.fO -p)w) +Dlswp' - (D 16 +D I9 i)W;.

+ D32 (w I w'~ + wzw'; - 2w') w;) - Ds(wd2 - 2w'd; + w';.rz + wd'; - 2w;l'l + w2II) (42)

SAS 26:1/10-8
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11"" = -D 20F'-(D 21 +D22»·~)f+(D23-D2).)W;'-(D24+D'7W~)W:

-D22(f~ -fi)lI"; + D2s.f~' -D26f~+D27w~' - (D H +D29f)w~

- DS(»'1 H-'~ + 11"2»-'; -2w'l »'2) -D8(wd; - 2W'i/2 +w';f2 + »'21'; -2w21'1 +»';f,). (44)

The constants D I-D 32 are listed in Arbocz and HoI (1989) ;f~ is given by eqn (15).
This set of inhomogeneous differential equations with variable coefficients together

with the appropriate boundary conditions listed in Arbocz and HoI (1989) form a response
problem which is solved numerically.

Post-buckling coefficients and imperfection form factors
For perfect shells one is interested in the variation of h(~) with ~ in the vicinity of

h = he. Near the bifurcation point he the asymptotic expansion given in eqn (8) is valid.
The post-buckling coefficients "a" and "b" are derived in Arbocz and HoI (1989) yielding

where

(47)

(48)

(49)

(50)

The subscript ( ), denotes the fact that the pre-buckling solution is evaluated at the
bifurcation point. The shorthand notation used

was first introduced by Hutchinson and Frauenthal (1969).
For imperfect shells the variation of h(~, e-) in the vicinity of the birfurcation point

h = he is given by the following asymptotic expansion (Cohen, 1968) (see also Fig. 7)

The imperfection form factors "0(" and "{3" are derived in Arbocz and HoI (1989) yielding

A
/

/
/

/

Acl----__.'
As 1-----,07-+.....:

Fig. 7. Equilibrium paths of perfect and imperfect systems.

(53)
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{3 = (l/A){t,'*(W, W(I»+F(I)*(W, wJ+n 3 -aAA(l/2)n4 +nS]) (54)

where

-Ii {[ , (I) '(I) • (I) (I)' An 3 - , A11Wc.x W.x +A I2 W".l'W.... +A I6 (Wc.xW.! +W.x wc.... )]w,xW".x

(56)

Since the initial imperfection is assumed to be

W=~W. (58)

W represents the shape of the initial imperfection. Notice that if the initial imperfection is
assumed to be affine to the buckling mode, then W= W( I).

As can be seen from Fig. 7 the buckling load of the imperfect structure A, occurs at
the "limit point" of the pre-buckling states. If the limit point is close enough to the
bifurcation point then A" the maximum load that the structure can support prior to
buckling, can also be evaluated from eqn (52) by maximizing A with respect to ~. For the
many practical applications where a unique buckling mode is associated with the lowest
buckling load and the buckling and initial post-buckling behaviour are symmetric with
respect to the buckling displacement, the first post-buckling coefficient "a" is identically
equal to zero. In this case using eqn (52) to maximize A with respect to ~ leads to the
Modified Koiter Formula (Cohen, 1971)

(1- pY/2 = (3/2») - 3a2b[1 - ({3/a)(l- Ps)]I~1 (59)

where Ps = A.JA,. and ~ is the normalized amplitude of the initial imperfection. It should
be emphasized that in all cases presented, ~ has been normalized with respect to the shell
thickness t and not some effective thickness of the stiffener-shell combination.

Generalized' 'load-shortening" relation
Information concerning the extent to which buckling can be expected to be gradual or

sudden can be obtained from the post-buckling variation of the applied variable load A
with the generalized displacement A. Notice that A •A represents the decrease in potential
energy of the applied variable loads. Thus

(60)

where NaP is the variable applied stress resultant and tap is the corresponding linear strain.
Notice that tap can be obtained from the nonlinear strain-displacement relations

(61)
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Using the perturbation expansions defined by eqn (8) one gets upon substitution and
regrouping

A'd = fiN [E(Ol-(1/2)W(OlW(O)}dxdvxf! xf! .,.f! 0

J

+ ;;{fl N: [Ell) -(1/2)(W{l) W(Ol + WlOl Wll)] dx dV}.. xf!af! ox.f!.a.f! •
.<

+;;2 {fiN: [E(2) -(1/2)(W(2) W(O) + W(O) W12l) - (1/2) W(I)WI I'] dx dV}+ .... (62).. af! xfJ .,.f!.x.f! .>.f! .
.\

Since the applied external load and the pre-buckling state is axisymmetric, therefore for an
asymmetric buckling mode

fi N [E(I) - (1/2)(W(l) W(O) + W(O) W(I)] dx dv = O.xf! .f! .a.f!...p.
s

(63)

Using Taylor series expansions at A = Ae for the pre-buckling quantities in eqn (62) and
specializing the results to the cases where the first post-buckling coefficient "a" is identically
equal to zero, one obtains after some regrouping

A'd = A 'd,,+ (A-Ae){f1N.p[E'f!r -(l/2)(We.• We.p+ We.• We.p)} dxdy

+ (l/bAe) fiN.f![EW -(l/2)(W~lWe.p+ We.• W~jl)-(l/2)W~I)W~J)] dx dY}+' o. (64)

where

E - ElO)lf1,f!r - f1,f! '
A=A('

Notice that if "a" is identically equal to zero then from eqn (8)

Finally, the generalized displacement A can be written as

(65)

(66)

(67)

(68)

d = d e+ (p-l) {fi(N'f!/A)[t'Pr -(1/2)(We.• We.f!+ We.• We.f!)] dx dy

+ (l/b) fi (NxpIA)[Ei~l_(l/2)(W~)W,.p+ Wc."W~:J)-(1/2)W~.l)W~JlJdXdY}+'" (69)

where now p = AlA", () = B( )IBp and de = generalized displacement just before buckling.
Computing the slope of the variable load vs generalized displacement curve just before

buckling one obtains
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aA1 {aA 1 }-I
K = aA, A=,\ = a; A=A,

= {f1(N.{I/A)[E.{I, - (1/2)( We.• We.{I + We.• We.{I)] dx dyrI (70)

Conversely, the slope of the variable load vs generalized displacement curve just after
buckling is given by

K* - 01\.1 - {CA1 }- I
( - 0IJ. A=A, - oA A=A,

= {Ii (N.pJI\.) [E.p, -(1/2)(Wc.• Wc.p+ We.• Wc.p)] dx dy

+ (l/b) Il (N.p/A) [E;jl -(1/2)(W~)Wc.{I+ We.aW~»-(1/2)W~)W~)] dxdyrI, (71)

As can be seen from Fig. 8, the angle of the initial slope just after buckling, {f*, where

(72)

is indeed helpful in determining whether the buckling will be gradual or catastrophic.
Notice that it is customary to normalize the generalized displacement A by the appropriate
membrane strain 8M (the strain which corresponds to the applied variable load) so that for
membrane pre-buckling the angle of the fundamental path (f = tan-I (8MKe) = 45°.

4. NUMERICAL ANALYSIS

Introducing as a unified variable the 16-dimensional vector yl I) defined as follows

Y(I) - I yO) - f y(l) - W yll) - W yll) - I' yO) - w'" (73)I - b 2 - 2, 3 - b 4 - h ~ - ), ... , 16 - 2

then the system of eqns (21)-(24) can be reduced to the following (nonlinear) eigenvalue
problem

~ yOl = fll)(i ylO) yll). A. p- f'\dx '" , ,Jr}
(74)

(75)

where the components of the 8 x 16 matrices e,I) and 8)1) depend on the boundary con-

1.0 1-----.."--+
Ps I----~S-~,_.."........._-

"--.....---..1...---- 3=41f".
1.0

Fig. 8. Generalized "load-shortening" curves.
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ditions at the shell edges. Notice that the four-dimensional vector

(76)

contains the known solution of eqn (16), the pre-buckling problem.
Introducing further, as another unified variable, the 20-dimensional vector y(21 defined

as follows

(77)

then the system of eqns (40)-(44) can be reduced to the following inhomogeneous two
point boundary value problem

:i yOl :::: fl 2l(i, y(o>, y(2) ; )"p, f) + f(i, y< I) (78)

(79)

where once again the components of the 10 x 20 boundary matrices INl and B~2) depend
on the boundary conditions at the shell edges. Notice that here the four-dimensional vector
ylO) contains the known solution of the pre-buckling problem [eqn (16)] and that the 16
dimensional vector V(I) is the eigenvector of the buckling problem [eqns (74-75»).

Because of earlier successful experiences with the method (Arbocz and Sechler, 1974;
Liu, 1988), it was decided to solve both the buckling problem [eqns (74-75)] and the post
buckling problem [eqns (78-79)] by the numerical technique known as "parallel shooting
over n-intervals" (Keller, 1968).

Solution of the buckling problem
To solve the buckling problem a generalization of Stodola's method (Von Karman

and Biot, 1940) for the calculation of the asymmetric buckling loads and the corresponding
buckling modes of circular cylindrical shells is used. This generalization was first published
by Cohen (1968).

The applied loading consists of axial compression, internal or external pressure and
clockwise or counter-clockwise torque. It is assumed to have a uniform spatial distribution
and is divided into a fixed part and a variable part. The magnitude of the variable part is
allowed to vary in proportion to a load parameter 1\.. This leads to an eigenvalue problem
for the critical load I\.c' In eqn (74) the user can select I\.c to be the critical value of either
the normalized axial load ;" or the normalized external pressure p or the normalized torque
i.

Because of the nonlinear dependence of the pre-buckling state on the variable load 1\.,
in general it is necessary to approach the critical eigenvalue (for a given circumferential
wave number n) by the solution ofa sequence of modified (linearized) eigenvalue problems.
The equations are obtained by restricting the search for eigenvalues to a sufficiently small
neighbourhood of an estimate I\. = I\.e so that in this neighbourhood the functions y(O) have
a linear dependence on 1\.. Setting

one has to first order in II.

where

I\. :::: 1\..+11.

Y'(O) ::::~y(Ol
01\. .

(80)

(81)
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Substituting this expression into eqns (74)-(75) and using .A. as the variable load yields the
following modified (linearized) eigenvalue problem

~y(1) =f(1)(i y(O) y(I)'A p- r)+"g(I)(i y<O) yll)di '" t" r .. ,
(82)

(75)

Notice that each of the "effective load terms" is split into a part independent of fJ. and a
second part linear in fJ.. The iteration equations are obtained by setting fJ. = 1 in the second
parts of the "effective load terms" and interpreting the buckling mode variables of these
parts as being known inputs from the previous iteration. Thus the first parts of the "effective
load terms" become homogeneous terms and the second parts become inhomogeneous
terms for the equivalent linearized problem ofeach iteration. Thus one must solve repeatedly

(83)

(84)

where
y(k) = buckling mode of the kth iteration

y(k- \) = buckling mode of the (k - 1)th iteration.

After each iteration the corresponding eigenvalue estimate jl(k) is calculated by evaluating
the following Rayleigh quotient

(85)

(87)

where the inner products are defined as follows

(U(k) , U(k) ; U(k- I), ulk - I)~

= f1[N~O) W~;) W~.~-I) +N.~O) W~~) W~;-I) +N~~)(W~) w~~- I) + W~~-I) W~~»] dx dy

+ f1[N~k) w~.~) W~~-I) +N~k) W\O) W~~-I) +N~k,)(W~~) W~~-I) + w~;- I) W~,O)]dx dy

+ f1[N~k-I) W~~) W~) +N~k-I) W~~)W~)+N~~-I)(W~)W~:) + W~) W~~)] dx dy. (86)

The iterations are continued until the sum A~k) + fJ.(k) remains essentially constant at the
value A I' A suitable choice for the sequence A~k) is A~ I) = 0 and A~k) = A~k- I) + (I /2)jl(k- I)

for k > 1, where the "relaxation factor" 1/2 is inserted in order to assure that at each stage
A~k) < AI' Cohen (1968) has shown that in order to insure that the eigenvalues fJ.(k) are real
it is necessary that A~k) < AI' For further details of the solution procedure the interested
reader should consult Arbocz and Hoi (1989) and Cohen (1968).

Solution of the post-buckling problem
Once the pre-buckling solution vector y(O) and the solution of the buckling problem,

the eigenvalue Ac and the corresponding eigenvector y( I) are known, the post-buckling
problem is governed by

~ y(2) = f(2)(i y(O) y(2). A p- f\+r(x y(I»di '" c, ,I.) ,

(88)
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Due to the often complicated functions of x represented by the known solution vectors yllil

and ylll anything but a numerical solution of this linear, inhomogeneous two-point bound
ary value problem is out of the question. A detailed description of the method used is given
in Keller (1968) and Arbocz and Hal (1989). Parallel shooting over n-intervals is slower
than a coarse standard finite difference or finite element scheme. However. if the length of
the intervals of integration is chosen properly so that numerical instabilities are avoided.
then this method gives more accurate results. Also, since the step size is changed auto
matically so as to satisfy the chosen convergence criterion, a single run is sufficient to obtain
a converged solution. Thus it is not necessary to repeat the solution with different step sizes
to ascertain that a properly converged solution has been found, as is the recommended
practice with the standard finite difference or finite element codes.

It is well known that for the linearized two-point boundary value problem in principle
Newton's method yields the correct initial value 8(2) directly without the need of iterations
(Keller. 1968). In later work it was found that the numerical accuracy of the solution can
be improved greatly by a few iterations. whereby the Jacobian is kept constant and only
the right-hand side is varied (Arbocz and HoI, 1989). The solution of the associated initial
value problems and the corresponding variational equations is done by the library sub
routine DEQ from Caltech's Willis Booth Computer Center. DEQ uses the method of
Runge-Kutta-Gill to compute starting values for an Adams-Moulton predictor--eorrector
scheme. As mentioned earlier, the program includes an option with variable interval size
and it uses automatic truncation error control. For shells with an L/R = 1.0, parallel
shooting over eight intervals is used. This actually involves the numerical integration of six
440-dimensional and two 220-dimensional vector equations. These high dimensions are due
to the simultaneous integration of the variational equations and the corresponding initial
value problem.

Finally. after the solution of the post-buckling problem has been obtained, one must
evaluate the integrals involved in the definition of the post-buckling coefficients "a" and
"h" [eqns (45-49)], of the imperfection form factors "ex" and "{3" [eqns (53-57)], of the
angle of the fundamental path {j and of the angle of the initial slope just after buckling (j*
[eqns (70-71)]. It has been shown in Arbocz and Sechler (1976) that it is advantageous to
evaluate the above integrals by solving initial value problems rather than using numerical
integration schemes. This same approach is used here. The interested reader should consult
Arbocz and HoI (1989) for further details.

5. NUMERICAL RESULTS

Thanks to the extensive NASA sponsored research programs carried out in the sixties
and the early seventies it is known that the degree of imperfection sensitivity of thin-walled
shell structures depends on the combination of shell geometry and the type of the applied
loading. The use of Koiter's general elastic post-buckling theory has been widely explored
and it was also found that boundary conditions (Hutchinson and Frauenthal, 1969) and
nonlinear modal interactions (Byskov and Hutchinson, 1977) can have a profound effect
on the imperfection sensitivity predictions. Furthermore it has been shown by Hutchinson
and Frauenthal (1969) for orthotropic cylinders, and by Tennyson et al. (1978) for
anisotropic shells, that for reliable prediction of the post-buckling behaviour one must
use a rigorous pre-buckling analysis.

Thus, although the computational module ANILISA has the capability of using a
membrane pre-buckling analysis, in this paper only results of the rigorous pre-buckling
branch are included. To test the accuracy and reliability of ANILISA among others the
following published results have been partially reproduced:

1. Hutchinson and Frauenthal's (1969) work on the post-buckling behaviour of stiffened
cylindrical shells;

2. Tennyson et al.'s (1978) work on the buckling of imperfect anisotropic cylinders under
combined loading.

As can be seen from Tables 1 and 2 the agreement is good, for the anisotropic shell
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Table I. Comparison of results using Hutchinson's orthotropic shell A,/d,t = 1.0, El,/d,D = 100, e,/t = -6.0
(outside), GJ/d,D = 0

SS-3 Boundary condition (N, = -No,!' w= 0, M, = 0)

n nL/R I., b 5 (}, (}~

Z 300 (Hutchinson and 6.5 8.79 -0.012 -0.0042 36.0 -142.0
Frauenthal. 1969)
ANILISA 8 6.24 8.813 -0.0119 -0.00379 28.1 -149.8

Z 500 (Hutchinson and 10.6 5.04 -0.029 -0.0130 43.0 -136.0
Frauenthal. 1969)
ANILISA II 11.08 5.046 -0.0270 -0.0113 37.5 -141.0

Z 750 (Hutchinson and 13.1 3.75 -0.034 -0.0210 44.0 -135.0
Frauenthal, 1969)
ANI LISA 11 13.57 3.752 -0.0333 -0.0204 40.1 -138.9

Z = 1000 (Hutchinson and 14.3 3.25 -0.030 -0.0230 45.0 -135.0
Frauenthal, 1969)
ANILISA 10 14.24 3.243 -0.0306 -0.0233 41.0 -138.0

C-4 Boundary condition (u = !' = W = w'x = 0)

n nLIR ;"( b 5 0, o~

Z 500 (Hutchinson and 10.45 10.44 -0.056 -0.064 45.0 -135.0
Frauenthal, 1969)
ANILISA 10 10.07 10.480 -0.0526 -0.0540 44.8 -134.9

Z 1000 (Hutchinson and 17.0 6.07 -0.046 -0.040 45.0 -135.0
Frauenthal, 1969)
ANILISA 12 17.09 6.076 -0.0459 -0.0384 45.0 -134.5

Note,' fj = rr. 2b; 0, and O~ are given in degrees.

Table 2. Comparison of results using Booton's anisotropic shell (30°, 0°, -30°),
R/t = 100,2 = VIRt = 200, t = 0.0267

C-4 Boundary condition (u = v = W = W... = 0)

n Booton (1976) ANILISA Units

Axial compression 6 -6785.0 -6780.1 Ibs
External pressure 9 27.34 27.348 psi
Clockwise torsion 9 7523.0 7522.3 in Ib
Counter-clockwise torsion 9 8228.0 8229.3 in Ib

even very good. The differences in the orthotropic shell results are due to the fact that
Hutchinson and Frauenthal (1969) treat nL/R as a continuous variable, whereas for
ANILISA the length over radius is specified and n is treated as an integer during the
search for the lowest eigenvalue.

To illustrate the capabilities of ANILISA one of the glass/epoxy (30°, 0°, -30°)
composite cylindrical shells tested by Booton (1976) is used. Its geometric and material
data are given in Table 3. In the following, the initial imperfection sensitivity computations
are based on the assumption that the shapes of the initial imperfections are affine to the
corresponding buckling modes. Thus

(89)

Also in all cases only the imperfection sensitivity of the lowest buckling load is calculated.

Axial compression
The normalized buckling load A..c and the second imperfection sensitivity coefficient

Ii = (X2b are plotted in Fig. 9 as a function of the modified Batdorf parameter 2, = L 2
/ Rt for

simply supported (Nx = - No, v = W = 0, M x = 0) anisotropic shells, At the lower part of
the figure the circumferential wave numbers n at which the lowest buckling loads occur are
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Table 3. Booton's anisotropic shell (30.0 , - 30e
). Rlt = 100.1", L' Rt = 200. I = 0.0267

[
E'] [1.3751

.:;, = ;1 -0.7582

I_H 0

-0.7582

2.6292

o

o ][N'] ,[0 0 0.1785][},,']o N, +,- 0 0 -00096 h,

4.8885 N -, 0.7430 0.1965 0 }""

[ M, ;

M';M"j
[ 0

0
~07430]n [56M 0.2214

:",]:J1
=- 0 0 -0.1965 N, +D 0.2214 0.38982c

-0.1785 0.0096 ON" 0 0

where, = J3(1- \'2). D '" Et 3/4,' and E = 5.83 x lOb psi. \' = 0.363.

0.5 .-------------------,

0,1
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o

0=6
7
8

10 3
10 z=.!Z

Rt

Fig. 9. Perfect shell buckling loads and imperfection sensitivity coefficients for simply supported
anisotropic shells under axial compression.

indicated. Notice that sharp changes in the second imperfection sensitivity coefficient
fj = rx 2b always occur at places where there is a change in the critical circumferential wave
number n. In Fig. 10 the pre-buckling, buckling and post-buckling mode shapes of a
relatively short shell (2 = 50) and of a shell of moderate length (2 = 400) are displayed.
The amplitudes of the buckling modes are normalized by the wall thickness t, and as has
been proven by Booton (1976), one of the components (here W I) is symmetric and the other
antisymmetric with respect to the mid-plane of the shell in the axial direction. Notice that
for better illustration all three post-buckling modes are plotted normalized to one using as
divisor their maximum amplitudes indicated in the figure. Also, the axial distances i = 0.354
and i = 1.0 are the midlengths ofshells yielding the (L!R) values that correspond to 2 = 50
and 2 = 400, respectively.

To investigate the effect of different boundary conditions in Fig. 11 the normalized
buckling load ).(' and the second imperfection sensitivity coefficient fj = rx 2b are shown for
fully clamped (u = v = W = W.x = 0) anisotropic shells. At low 2 values the sharp changes
in fj = rx 2b occur at either the locations where there is a jump in the critical circumferential
wave number n, or as has been shown in Arbocz and HoI (1989) at 2 values where there
are (nearly) simultaneous buckling modes. At the higher 2 values the fluctuation of fj = rx 2b
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Fig. 10. Mode shapes of simply supported anisotropic shells under axial compression; (a) pre
buckling shapes. (b) buckling modes. (c) post-buckling modes.
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Fig. II. Perfect shells buckling loads and imperfection sensitivity coefficients for fully c1amped
anisotropic shells under axial compression.
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Fig. 12. Mode shapes of fully clamped anisotropic shells under axial compression: (a) pre-buckling
shapes. (b) buckling modes. (c) post-buckling modes.

can be attributed to the minimization of Ac with respect to discrete values of n. In Fig. 12
the pre-buckling, buckling and post-buckling mode shapes are displayed for shells of'2 = 50
and '2 = 400, respectively.

Hydrostatic pressure
For simply supported anisotropic shells the normalized buckling pressure Pc and the

second imperfection sensitivity coefficient E= rx 2b are shown in Fig. 13, whereas in Fig. 14
the pre-buckling, buckling and post-buckling mode shapes for shells of'2 = 50 and '2 = 400
are displayed. Notice that for '2 = 50 the wl'-mode undergoes rapid changes close to
the shell edge, a behaviour that would be missed completely by a coarse finite element
discretization (Byskov, 1988). The decrease in E= rx 2b with increasing values of '2 is similar
to earlier results obtained by Yamaki (1984) for isotropic shells. Notice that discontinuities
in E= a 2b occur at places where there is a change in the critical circumferential wave
number n. Also, a closer observation of Fig. 14 reveals that for the hydrostatic pressure
loading both the buckling and the post-buckling modes are dominated by the cos nO and
cos 2nO terms thus exhibiting very little skewedness.

Counter-clockwise vs clockwise torsion
For the particular Booton shell chosen the only" 16" and "26" terms in the constitutive

equations listed in Table 3 that do not vanish are the B16 and B!6 terms. These terms
represent coupling between the bending and shear strain of the middle surface. Further, as
can be seen from the constitutive equations, if the twisting of the cylinder is due to a positive
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Fig. 13. Perfect shell buckling loads and imperfection sensitivity coefficients for simply supported
anisotropic shells under hydrostatic pressure.

(a) z. SO. pc.0.1098541n.101

Wc·we

1.400, ~c=O.o37945 (n=6)

Wc·wO

-0.1 -0.1
i

0.354 to
0.1

(b)

w,,~

-to

""'W2

-to

"'2
i x

0
0.354 1.0

to

"

r wy./.-........... /
/ ............t......-.
"

to

'"0./093 wW024 wYl001

-to

to

(e)
w",/ W W

"'1291 1¥.049 Yf.OO2

-to

Fig. 14. Mode shapes of simply supported anisotropic shells under hydrostatic pressure: (a) pre
buckling shapes, (b) buckling modes, (c) post-buckling modes.
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Fig. IS, Definition of stress- and moment resultants.

(counter-clockwise) applied torque, then }'xl is also positive, which results in a negative
bending moment M x . Considering the definition of M x in Fig. 15 it is clear that a negative
bending moment will produce an outward normal deflection at the mid-plane of the shell
(at i = If2(xfL», which is stabilizing (Hutchinson and FrauenthaL 1969). Conversely, a
negative torsional loading (clockwise torque) results in a positive bending moment M.n

which in turn produces an inward normal deflection at i = If2(xfL), which is destabilizing.
Considering now Figs 16 and 17, which display the pre-buckling, the buckling and the post-

(0) 2. SO. 'l(= 0,279886 (0=10)

Wt·Wo

-0,01 i

0.01 0.354

l =400. 't
C
=0.139176 (0=8 I

Wt +""0

1.0

i

10

.... 0.354

/--
""13.1

"'a./.162"'13/.010 "'Yf.014

-lO

Fig. 16. Mode shapes for simply supported anisotropic shells under counter-clockwise torsion:
(a) pre-buckling shapes, (b) buckling modes. (c) post-buckling modes.
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Fig. 17. Mode shapes for simply supported anisotropic shells under clockwise torsion: (a) pre
buckling shapes. (b) buckling modes. (c) post-buckling modes.

buckling modes for counter-clockwise (ie > 0) and clockwise (ie < 0) torsion, respectively,
indeed the magnitudes (absolute values) of the critical nonnalized torsion parameter i e are
higher if the applied external torque is counter-clockwise. This phenomenon was first
described by Booton (1976). Notice also that for torsional loading the pre-buckling defor
mations at the bifurcation point are about an order of magnitude smaller than for the other
external loads considered.

From the plots of the second imperfection sensitivity coefficient 5 = a 2b, shown in Figs
18 and 19, it is clear that for shorter shells (2 < 100) if the applied torque is counter
clockwise one obtains a configuration which is more sensitive to initial imperfections affine
to the buckling mode than if the applied external torque is clockwise. For increasing
2 = L 2/Rt values the difference in imperfection sensitivity is smaller and the curves become
gradually nearly identical and thus independent of the direction of the applied torque.
Notice also that discontinuities in 5 = a2b occur only at places where there is a change in
the critical circumferential wave number n.

Experimental evidence (Arbocz and Babcock, 1969; Singer et al., 1971), indicates that
the shapes of the dominant initial imperfections in real structures often do not coincide
with the buckling modes of the perfect structure. With the introduction of the imperfection
fonn factors a and Pthe computational module ANILISA can also be used for an estimate
of the imperfection sensitivity due to the occurrence of any single mode asymmetric imper
fection. To illustrate this capability Tables 4 and 5 display data about the imperfection
sensitivity of Booton's anisotropic shells under different external loads, whereby besides an
initial imperfection affine to the respective buckling mode [see eqn (89)], the following modal
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Fig. 18. Perfect shell buckling loads and imperfection sensitivity coefficients for simply supported
anisotropic shells under counter-clockwise torsion.
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Fig. 19. Perfect shell buckling loads and imperfection sensitivity coefficients for simply supported
anisotropic shells under clockwise torsion.

initial imperfection

w= ~W = ~t sin (nxjL) cos n() (90)

has also been investigated. In all cases the circumferential wave number n is chosen to be
identical to the critical wave number (the circumferential wave number at which the lowest
buckling load occurs). Notice also that the modal imperfection specified by eqn (90) consists
of a single half-wave in the axial direction.
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Table 4. Imperfection form factors and imperfection sensitivity coefficients for axially compressed anisotropic
shells

Simply supported Clamped

(X fj = a2b ex 5 = (X2/1

1 Affine Modal Affine Modal Affine Modal Affine Modal

50 0.4317 0.2743 -0.0685 -0.0277 0.4585 0.2092 -0.0573 -0.0119
100 0.4244 0.1462 -0.0585 -0.0069 0.9071 -0.0117 -0.0879 -0.0
200 0.4952 0.1155 -0.0680 -0.0037 0.9589 -0.0035 -0.0599 -0.0
300 0.5087 -0.0097 -0.0923 -0.0 0.9804 0.0133 -0.0102 -0.0
400 0.4804 0.0047 -0.0846 -0.0 0.9732 0.0077 -0.0326 -·0.0
500 0.5060 -0.0025 -0.0886 -0.0 0.9811 0.0027 -0.0357 -0.0
600 0.4883 -0.0015 -0.0816 -0.0 0.9895 0.0037 -0.0096 -0.0
700 0.5022 0.0056 -0.0838 -0.0 0.9878 0.0021 -0.0279 -0.0
800 0.4977 0.0052 -0.0824 -0.0 0.9915 0.0012 -0.0102 -0.0
900 0.5022 0.0144 -0.0851 -0.0001 0.9937 0.0019 -0.0147 -0.0

Considering now the tabulated results it appears that for axial compression, except for
shorter shells, the modal imperfection specified in eqn (90) does not affect the buckling load
of the perfect anisotropic shells at all. On the other hand, if the external load is hydrostatic
pressure then both the single affine and the single modal imperfections, specified by eqns
(89) and (90), produce about the same degree ofimperfection sensitivity. Further, also under
counter-clockwise or clockwise torsional loading the single modal imperfection appears to
cause very little imperfection sensitivity.

Finally, in the practice, the design engineers are not only interested in whether and
how much the buckling load prediction of their proposed shell structure is sensitive to initial
imperfections, they also want to obtain an estimate of the "knockdown" factor)' with which
they must multiply the buckling load prediction of the perfect structure in order to arrive
at the safe allowable load level. With the help ofeqn (59) such an estimate can be computed
if besides the imperfection sensitivity coefficient 5 = (X2 b one also has an idea of the size of
the amplitude ~ of the single mode imperfection that is likely to occur. For such cases the
predictions of Cohen's formula [eqn (59)] are conveniently summarized in Fig. 20.

6. CONCLUSIONS

It is by now widely accepted that Koiter's General Theory ofElastic Stability (1967) has
greatly contributed to our understanding of the sometimes perplexing stability behaviour of
thin-walled structures. However, due to its mathematical complexity it is not always easy
for the practising structural engineer to find the information he wants for the particular

1.0 ....--------------------,

A
p = sA.

5 "e

0.5

0,1

OL.-. ............~__:::____;:::=;:::::::;_~'"--.l-.-o.--""-~
0,01 0,1 1-a.2b~2 1,0

Fig. 20. Estimates of critical loads for imperfection sensitive structures (Cohen, 1971).
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Table 5. Imperfection form factors and imperfection sensitivity coefficients for simply supported anisotropic shells

Hydrostatic pressure Counter~clockwise torsion Clockwise torsion
>

fi = a'h fi = a 2b h = a'h
;.<J

a a a '"Z Affine Modal Affine Modal Affine Modal Affine Modal Affine Modal Affine Modal ;;;
N..,

50 0.9701 0.9519 -0.2157 -0.2077 1.0241 0.4344 -0.1542 -0.0277 1.0086 0.3974 -0.0906 ~0.0141 ::l
Q.

100 0.9914 0.9761 -0.1289 -0.1250 1.0136 0.4085 -0.0811 -0.0132 1.0029 0.3771 -0.0760 -0.0108
200 0.9975 0.9915 -0.0669 -0.0661 1.0065 0.3823 -0.0454 -0.0066 1.0007 0.3311 -0.0445 -0.0049 s:300 0.9982 0.9953 -0.0522 -0.0519 1.0046 0.3908 -0.0352 -0.0053 1.0000 0.3510 -0.0351 -0.0043
400 0.9989 0.9967 -0.0509 -·0.0507 1.0030 0.3585 -0.0261 -0.0033 0.9999 0.3243 -0.0269 -0.0028 >
500 0.9993 0.9977 -0.0361 -0.0360 1.0028 0.3982 -0.0244 -0.0038 0.9997 0.3730 -0.0246 -0.0034 s:600 0.9995 0.9982 -0.0271 -0.0270 1.0021 0.3793 -0.0200 -0.0029 0.9997 0.3571 -0.0205 -0.0026
700 0.9997 0.9985 -0.0211 -0.0210 1.0017 0.3603 -0.0170 -0.0022 0.9998 0.3407 -0.0176 -0.0020 :r:
800 0.9996 0.9987 -0.0283 -0.0283 1.0014 0.3416 -0.0148 -0.0017 0.9998 0.3242 -0.0154 -0.0016 ;2
900 0.9997 0.9989 -0.0234 -0.0234 1.0011 0.3232 -0.0131 -0.0014 0.9998 0.3077 -0.0138 - 0.0013
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structure at hand from the many publications that are available. What he needs IS a
computational module that enables him to obtain the desired information readily.

It has been shown that within the context of Koiter's initial post-buckling theory the
computational module ANILISA can be used successfully to investigate the imperfection
sensitivity of the buckling loads of isotropic, orthotropic and of fully anisotropic cylindrical
shells under combined axial compression, external or internal pressure and torsion, taking
into account the effect of different boundary conditions and of different initial imperfection
shapes.

As a "building block" of the hierarchical design and analysis system "DISDECO"
the computational module ANILISA makes feasible the first step towards acquiring detailed
understanding of the expected instability behaviour of different cylindrical shell con
figurations. This knowledge is a prerequisite for the development of discrete nonlinear
computational models which can reliably predict the load carrying capability of the
structure.

It must be stressed that the predictions of ANILISA provide only a first indication of
the expected nonlinear behaviour and all its findings must be evaluated within the context
of the fundamental assumptions involved in the theory. Thus the fact that a single long
wavelength modal imperfection does not appear to produce any significant imperfection
sensitivity may be misleading, since especially under axial compression for the anisotropic
shells considered there may exist several nearly simultaneous buckling modes, and it is
known that in such situations nonlinear modal interaction may reduce the load carrying
capability of the structure considerably. For these cases the user must switch to other more
advanced computational modules available within "DISDECO" which can handle the
nonlinear interaction problem of multiple initial imperfection and response modes.
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APPENDIX A

Periodicitv condition
If th~ solution is to satisfy the periodicity requirement then, by definition

f'·RJo v.,.dy = 0

must hold where

t'.• = E,+(I/R)W-(1/2)W.~

further

and

(AI)

(A2)

(A3)

Substituting for Wand F the assumed perturbation expansion yields after regrouping and ordering by powers
of ~

D, = (t/cR){( -A.At,+cW,)+(-pA~2+CWp)+(iA~6+CW,)+A~d;;-(t/2R).B~,WO+CWO}

+ (t/cR)~{[A!d'; -At,n'f, -1~6nf2-(t/2R)(~lw';-.B~,n'wl+2.B~6nw2)+cw,lcosnil

+ [A!>.!,; -At,n' f, +A~6nf'1 - (t/2R)(.B~,w'; -.B~,n2w, -2.B~6nw',)+cw,l sin nil}

+(t/cR)~'{A!d; -(t/2R).B~1 w;+cw. -(ct/4R)n2(w~+wD+ ... + IA~,j~ -At,4n2fp-A~62nf;.

- (t/2R)(.B~, wp - ~,4n'wp +4~6nw;)+cwp + (ct/4R)n'(wi - wi)] cos 2ne

+ IA!,F - At,4n'f: +A~62n.f;'
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- (t!2R)(.B! I"';: - b!24n2wo -4B!.nwp)+ cwo' +(cl/2R)n2wl W2) sin 2nO}

+ (t!CR)~3 {- (ct/R)n 2[(w lw~+W2W) cos nO- (W2W~-WIII')sin nO

- (lI'lll'p -11'2"") cos 3nO- (W2W~+ 11'1 w.) sin 3nOJ}

+(t!cR)~' {- (ctjR)n2[w~+w: -2w~wo sin 4nO- (11'; _11';2) cos 4nOJ}

where () = y/R. Substituting this expression into eqn (AI) and carrying out the y-integration yields

973

(M)

{( -J.Af, +cW,.) + (-pA!2 +cWp ) +(fA!. -fcW,)+A!do- (t/2R)B!,wo +cwo}

+({A!d~ -(t/2R).B!,w~+cw, -(ct/4R)n2(wt+wD} +~'{ -(ct!R)n'("'fi +w2
)} = O. (A5)

Notice that the underlined tenns vanish identically since they are equal to eqns (15) and (34), respectively. with
the constants C\ = C2 = 0 and C3 = C. = O. If one now lets

W, = Af2).jC

Wp = A!2ft/c

W, = -A!6f/c

then the periodicity condition (AI) is satisfied up to and including tenns of the order ~J.

(A6a)

(A6b)

(A6c)


